
Open Source Python GIS Hacks Page: 1
Intro to Python 6/16/2005

Introduction to Python

You need a quickie refresher on Python to get started.

Python’s reputation precedes it. You’ve probably heard that is Python an
interpreted language, that it has significant whitespace (which some find
repulsive), and that it powers some of the most well known websites and
computing systems in the world.

You may have heard that Python runs slow (true in certain circumstances). It
doesn’t support this or that programming construct (it might eventually if it is
worthy enough). Every language has its warts, but Python is one of the few
languages that both trusts and puts the developer first. By trust, I mean that
Python doesn’t cut off your nose to spite your face. You generally won’t find
yourself jumping through hoops to make the language do what you want. It
doesn’t put you in a padded room to protect you from yourself (although it
doesn’t dangle you from a cliff like C can either).

By putting the developer first, I mean that Python puts your productivity first.
The key insight that the Python developers had (Guido in particular) is that a
developer spends most of his/her time reading code, not writing it. Getting up to
speed with someone else’s (and your own if you’ve been away from it for awhile)
code is easy because all of the stylistic choices have been made for you (no
arguing about brace styles, indenting, and function layout). This frees the
developer to focus on good code that does what it is supposed to, not extraneous
details that don’t matter much in the end.

Enough proselytizing. Let’s do some Python. Start by opening up ActiveState
Python by choosing Start – Programs – ActiveState ActivePython 2.4 –
Pythonwin IDE. The Python interpreter will open up in a document window.

1 PythonWin 2.4.1 (#65, Mar 30 2005, 09:33:37) [MSC v.1310 32 bit
(Intel)] on win32.Portions Copyright 1994-2004 Mark Hammond
(mhammond@skippinet.com.au) - see 'Help/About PythonWin' for further
copyright information.

2 >>>
The interpreter is the thing that runs your program. It combines the process of
compiling and running your code at the same time. You can run a Python
program in two ways – by opening up an interpreter and running it interactively,
or by calling the interpreter to run a program in a non-interactive mode (in the

Howard Butler and Sean Gillies Open Source Geospatial '05
 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 2
Intro to Python 6/16/2005

background).

We’ll start with the ubiquitous “Hello World.”

3 >>> print "Hello World"
4 Hello World

Data Types

Here is some example code that demonstrates the three ultra-basic data types
that you’ll need when working with Python.

5 >>> an_integer = 3
6 >>> an_integer
7 3
8 >>> a_float = 3.0
9 >>> a_float
103.0
11>>> a_string = '3.0'
12>>> a_string
13'3.0'
14>>> an_integer + a_float
156.0
16>>> an_integer + an_integer
176
18>>> a_string + a_float
19Traceback (most recent call last):
20 File "<stdin>", line 1, in ?
21TypeError: cannot concatenate 'str' and 'float' objects

Notice that attempting to add the string and float throws an exception called
TypeError. This error was thrown because Python can’t automatically coerce the
objects of type string and float. We can cast the string object into a float by
calling the float() method on it.

22>>> float(a_string) + a_float
236.0

Of course, if the string is really text and not numeric, the float() method method
will throw an exception complaining about it.

24>>> float('a')
25Traceback (most recent call last):
26 File "<stdin>", line 1, in ?
27ValueError: invalid literal for float(): a

Data Structures

Next, we’ll cover the three basic data structures that you’ll find when working

Howard Butler and Sean Gillies Open Source Geospatial '05
 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 3
Intro to Python 6/16/2005

with Python programs.

The first is a list. A list is your basic, integer indexed-based data structure.

28>>> a_list = ['a','b','c']
29>>> another_list = ['3', 3, 3.0]

Notice that another_list has objects of type string, integer, and float. Lists (actually
all of the data structures) can contain objects of heterogeneous type.

The second is a dictionary, or hash table. A dictionary is used when you want to
be able to access something by key, rather than by index alone. Use a dictionary
when you want to search through a large group of things, rather than interating
through a list and testing each member. Also thing to note is that a dictionary’s
keys are always strings (or hashable objects) and that duplicates are not allowed
(you can’t have two items in a dictionary with the key ‘a’ for example).

30>>> a_dictionary = {'a':1, 'b':2, 'c':3}
31>>> a_dictionary['a']
321

The third major data type is the tuple. A tuple is just like a list, except that it
cannot have items added or removed from it once it is instantiated. One way to
think of a tuple is as a “read-only” type of list.

33>>> a_tuple = ('a','b','c')
Conditionals

Decisions, decisions, decisions… a program isn’t really a program unless you can
alter an operation based on some input. You universally do this with a
conditional statement. In Python, as with many languages, this is done using an
if…else construct.

34a_string = 'a'
35if a_string == 'a':
36 print 'it was a'
37else:
38 print 'it was not a'
39
40it was a
41if a_string == 'a':
42 print 'it was a'
43elif a_string == 'b':
44 print 'it was b'
45else:
46 print 'it was neither'

Howard Butler and Sean Gillies Open Source Geospatial '05
 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 4
Intro to Python 6/16/2005
47
48it was a

Notice that the print statements are indented underneath the conditional
statements. Python denotes code blocks with indentation, rather than using
curly braces or some other punctuation. As long as the code blocks are all evenly
indented, it will work. The convention is to use 4 spaces for indenting each code
block, and usually great care is taken to not mix in tabs and spaces to make it
easy to send code around the internet – compensating for the various system and
tab stops that might be out there.

Another important item to note here is that = is different than ==. One equals
sign is for assignment and two equals signs are for comparison. For example, this
code snippet isn’t going to do what you’d hoped for.

49>>> if a_string = 'b':
50 File "<stdin>", line 1
51 if a_string = 'b':
52 ^
53SyntaxError: invalid syntax

Loops

Computers are computers because they can do things a lot of times in a row and
they don’t complain about it. There are two ways to do a lot of things in a row in
Python. The first is a for loop and the second is a while loop.

54for item in a_list:
55 print 'lowercase: ', item, 'uppercase: ', item.upper()
56lowercase: a uppercase: A
57lowercase: b uppercase: B
58lowercase: c uppercase: C

Another way of printing the results is to use string interpolation. The string
substitution syntax is very similar to the printf substitution in C. If you find
yourself adding a lot of strings together into one larger one, use string
interpolation instead of the + operator. It will make things easier to read and
easier to change.

59for item in a_list:
60 print 'lowercase: %s uppercase:%s'% (item, item.upper())

Functions

Functions allow you to consolidate operations, eliminate code redundancy, and
clean up your code. Unlike other languages, functions in Python rely on

Howard Butler and Sean Gillies Open Source Geospatial '05
 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 5
Intro to Python 6/16/2005

something that is casually called “duck typing.” Duck typing means “if it acts
like a duck and quacks like a duck, we’ll treat it like a duck.” As long as the
object passed into the function has the proper attributes and/or methods, the
function will happily call and work with it.

61def print_it(astring):
62 print astring
63>>> print_it('Howard')
64Howard

A function is started with a def for define. Then comes the name and the list of
parameters inside of parenthesis. Our print_it function takes a single parameter,
astring, and prints it.

You can also define default arguments in function. This is commonly done to
reduce line noise in the code and allow flexibility.

65def print_it_two(astring, salutation="Mr."):
66 print salutation, astring
67>>> print_it_two('Howard Butler')
68Mr. Howard Butler
69>>> print_it_two('Cunningham', salutation="Mrs.")
70Mrs. Cunningham

Objects

In Python, everything is an object. This includes things like functions, class
definitions, and code itself. All of this object stuff doesn’t mean that you have to
program in an object-oriented way (unlike some languages like Ruby, for
example). You can still write a straight-ahead, linear program that manipulates
some text, or a module that is just a bunch of functions that are called in a specific
order.

Even though you aren’t required to program in an object-oriented way, it is
helpful to understand how to use objects in Python. All of the code that you’ll
import and use, including stuff from the standard library, is arranged in objects.

I find it helpful when working with object-oriented code to think of verbs.
Objects have things, objects are things, and objects do things.

Have

Howard Butler and Sean Gillies Open Source Geospatial '05
 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 6
Intro to Python 6/16/2005

When we say that objects have things, we mean that we use objects to carry
data. You will hear the words property and attribute to describe this. There
are slight differences between a property and an attribute of an object, but
in Python, for the most part, you shouldn’t have to care. Just remember
when someone says that an object has something, they are referring to the
data that it carries.

Are

When we say that objects are things, we mean that an object is of some type.
A type might sometimes be coerced into another type, or it might inherit
attributes and methods from a parent type (called a subclass or subtype).

Do

When we say that objects do things, we mean that we use objects to perform
an action on data. You will hear the words method or function to describe
this. It might perform this action on or using one of its own attributes or
data that you give it to act on.

You define an object by using the class keyword.

71class Bear:
72 def __init__(self, name='Yogi'):
73 self.name = name
74 def growl(self):
75 print 'grrrr'
76 def eat(self, food):
77 print self.name, 'eats', food
78 def __str__(self):
79 return 'My name is %s' % (self.name)

The first thing we do is define an __init__ method. __init__ is a special or
“magic” method in Python in which we define the data the class will carry along
with it (or have). Note the use of a default method, with the Bear’s name
defaulting to Yogi. The __str__ method defines what is returned when we try to
get a string representation of the Bear. In our case, we just return a string that
reports the Bear’s name…

growl and eat are methods that define something that the Bear class does.

80>>> yogi = Bear()
81>>> yogi.eat('tomatoes')

Howard Butler and Sean Gillies Open Source Geospatial '05
 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 7
Intro to Python 6/16/2005
82Yogi eats tomatoes
83>>> yogi = Bear()
84>>> yogi.eat('tomatoes')
85Yogi eats tomatoes
86>>> print yogi
87My name is Yogi
88>>> yogi.growl()
89grrrr

We can find out more about what yogi is by asking its type with the type()
function.

90>>> type(yogi)
91<type 'instance'>

And we can check what type it is by comparing it to its class.

92>>> isinstance(yogi, Bear)
93True

Modules and Packages

Python Module

A module is a file containing Python statements with a .py extension. Modules
are used to reduce the amount of typing you do at the interpreter prompt, and,
of course, to reuse code in different applications.

For example, with an editor create a new file called wkt.py in your current
directory and type into it the following:

def wktpoint(x, y):
 return 'POINT (%f %f)' % (x, y)

This defines a function which takes a coordinate in the form of two floats,
interpolates the coordinate values into a well-known text representation of a
point, and returns this string.

The module is loaded using a Python import statement

>>> import wkt

dropping the .py extension, and afterwards the function is callable using :

Howard Butler and Sean Gillies Open Source Geospatial '05
 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 8
Intro to Python 6/16/2005
>>> wkt.wktpoint(1, 2)
'POINT (1.000000 2.000000)'
>>>

Notice that after you import the wkt module, your current directory now
contains a wkt.pyc file. This is the module as compiled bytecode, and speeds up
the next import of the module. The Python interpreter compares the timestamps
on the compiled and source module so that it is recompiled whenever the source
has been changed.

Module Search Path
Note that we didn't specify any path to the wkt module. How is it found? By
default Python will search for files in the following directory order:

1. current directory (interpreter prompt) or directory of the input script

2. directories specified in the PYTHONPATH environment variable

3. installation-dependent system paths, such as c:\python24\lib for the
library of standard modules and c:\python24\lib\site-packages for
installed non-standard modules.

The PYTHONPATH variable is useful with uninstalled bundles such FWTools.

The dir() function
The built-in dir() function returns a sorted list of the names defined in a module.
This is all names: variables, functions, classes. Using our wkt.py as an example:
>>> import wk
>>> dir(wkt)
['__builtins__', '__doc__', '__file__', '__name__',
'wktpoint']
>>>

The first four names are common to all modules and then there is our wktpoint
function.

Finding Module Constants
A module is a great place to keep constants, and all of our GIS modules define a
few. If you want to see all the mapscript integer constants and their values:

Howard Butler and Sean Gillies Open Source Geospatial '05
 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 9
Intro to Python 6/16/2005
>>> from mapscript import mapscript
>>> [(n, eval('mapscript.%s' % (n))) \
... for n in dir(mapscript) \
... if type(eval('mapscript.%s' % (n))) == type(1)]
[('FTDouble', 2), ('FTInteger', 1), ('FTInvalid', 3),
('FTString', 0), ('MAX_PARAMS', 10000),
('MESSAGELENGTH', 2048), ('MS_AUTO', 9), ('MS_BITMAP', 1),
('MS_CC', 8), ('MS_CGIERR', 13), ('MS_CHILDERR', 31),
('MS_CJC_BEVEL', 1), ...]

the eval function evaluates a string as a Python expression. For example:
>>> eval('1 + 1')
2
>>>

we use it above within a Python list comprehension to generate a list of names,
filter those that have integer type values and return the name and value as a
tuple. List comprehensions are an increasingly popular Python construction. The
one above is quite complex. Here are simpler examples that build up to the same
level of complexity:
>>> [x for x in [1, 2, 3]]
[1, 2, 3]
>>> [(x, 2*x) for x in [1, 2, 3]]
[(1, 2), (2, 4), (3, 6)]
>>> [(x, 2*x) for x in [1, 2, 3] if x > 1]
[(2, 4), (3, 6)]

Packages
A package is a directory of modules and allows us to structure the module
namespace. It also allows developers to avoid module name conflicts. We can all
have our own geometry module as long as its contained within a unique
package.

Previously we imported the mapscript module from the mapscript package
>>> from mapscript import mapscript

Another example is the xml package from the standard library. Browse to
C:\Python24\Lib\xml and note that it contains, among other things, sax and
dom sub-packages. This separation is for efficiency as much as namespace

Howard Butler and Sean Gillies Open Source Geospatial '05
 Howard Butler June 16-18, 2005

Minneapolis, MN

Open Source Python GIS Hacks Page: 10
Intro to Python 6/16/2005

structure, as the SAX and DOM approaches to XML are not usually combined in
a single application, and there's no point in loading a module that won't be used.

Howard Butler and Sean Gillies Open Source Geospatial '05
 Howard Butler June 16-18, 2005

Minneapolis, MN

