Python/C API Reference Manual

Guido van Rossum
Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA
E-mail: guido@CNRI.Reston.Va.US , guido@python.org

December 31, 1997
Release 1.5

Copyright(©) 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
that copyright notice and this permission notice appear in supporting documentation, and that the names
of Stichting Mathematisch Centrum or CWI or Corporation for National Research Initiatives or CNRI not
be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

While CWI is the initial source for this software, a maodified version is made available by the Corporation
for National Research Initiatives (CNRI) at the Internet address ftp:/ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH RE-
GARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Abstract

This manual documents the API used by C (or C++) programmers who want to write extension modules or
embed Python. It is a companion to “Extending and Embedding the Python Interpreter”, which describes
the general principles of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. | hope that it is nevertheless useful. | will

continue to work on it, and release new versions from time to time, independent from Python source code
releases.

Contents

1 Introduction 1
1.1 IncludeFiles. e e 1
1.2 Objects, Typesand Reference Counts 2

1.2.1 Reference Counts e 2
1.2.2 TYPES . . o e e e 5

1.3 EXCEPLIONS o o 5
1.4 Embedding Python e 7

2 Basic Utilities 9

3 Reference Counting 10

4 Exception Handling 11
4.1 Standard EXceptions e e e e 13

5 Utilities 14
5.1 OSULIlItIiesS e e 14
5.2 Importing modules. e e 14

6 Debugging 17

7 The Very High Level Layer 18

8 Abstract Objects Layer 19
8.1 ObjectProtocol 19
8.2 Number Protocol e 21
8.3 Sequence protocol. e 23
8.4 Mapping protocol 24
8.5 CoNnstructors e 25

9 Concrete Objects Layer 26

10 Defining New Object Types 27

11 Initialization, Finalization, and Threads 28
11.1 Thread State and the Global Interpreter Lock 31
11.2 Defining New Object Types 36

12 Specific Data Types 37

12.1 Fundamental Objects 37
12.1.1 Type Objects e e e e e 37
12.1.2 TheNone Object 37

12.2 Sequence Objects e e e e 37
12.2.1 String Objects e 37
12.2.2 Tuple Objects e e e 38
12.2.3 ListObjects e 39

12.3 Mapping Objects e e e e 39
12.3.1 Dictionary Objects 39

12.4 Numeric Objects 40
12.4.1 PlainiInteger Objects e 40
12.4.2 LongInteger Objects 41
12.4.3 Floating PointObjects e 41
12.4.4 Complex Number Objects 42

125 OtherObjects e e e e 42
125.1 FileObjects e 42
1252 CObjects 43

Chapter 1

Introduction

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python
interpreter at a variety of levels. The APl is equally usable from C++, but for brevity it is generally referred

to as the Python/C API. There are two fundamentally different reasons for using the Python/C API. The first
reason is to write “extension modules” for specific purposes; these are C modules that extend the Python
interpreter. This is probably the most common use. The second reason is to use Python as a component in a
larger application; this technique is generally referred to as “embedding” Python in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works
well. There are several tools that automate the process to some extent. While people have embedded Python
in other applications since its early existence, the process of embedding Python is less straightforward that
writing an extension. Python 1.5 introduces a number of new API functions as well as some changes to the
build process that make embedding much simpler. This manual describes the 1.5 state of affair.

Many API functions are useful independent of whether you're embedding or extending Python; moreover,
most applications that embed Python will need to provide a custom extension as well, so it’s probably a good
idea to become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the
following line:

#include "Python.h"

This implies inclusion of the following standard header files: stdio.h, string.h, errno.h, and stdlib.h (if avail-
able).

All user visible names defined by Python.h (except those defined by the included standard headers) have one
of the prefixePy or _Py. Names beginning withPy are for internal use only. Structure member names do
not have a reserved prefix.

Important: user code should never define names that beginRyittr _Py. This confuses the reader, and
jeopardizes the portability of the user code to future Python versions, which may define additional names
beginning with one of these prefixes.

1.2 Obijects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value Biypgect *

This type is a pointer (obviously!) to an opaque data type representing an arbitrary Python object. Since all
Python object types are treated the same way by the Python language in most situations (e.g., assignments,
scope rules, and argument passing), it is only fitting that they should be represented by a single C type. All
Python objects live on the heap: you never declare an automatic or static variable Bi@pgect , only

pointer variables of typ@yObject * can be declared.

All Python objects (even Python integers) have a “type” and a “reference count”. An object’s type deter-
mines what kind of object it is (e.g., an integer, a list, or a user-defined function; there are many more as
explained in the Python Language Reference Manual). For each of the well-known types there is a macro to
check whether an object is of that type; for instarfégl.ist _Check(a) is true iff the object pointed to

by a is a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severly limited) memory
size; it counts how many different places there are that have a reference to an object. Such a place could be
another object, or a global (or static) C variable, or a local variable in some C function. When an object’s
reference count becomes zero, the object is deallocated. If it contains references to other objects, their
reference count is decremented. Those other objects may be deallocated in turn, if this decrement makes
their reference count become zero, and so on. (There’s an obvious problem with objects that reference each
other here; for now, the solution is “don’t do that”.)

Reference counts are always manipulated explicitly. The normal way is to use the RyateCREF(a)

to increment an object’s reference count by one, BRAOECREF(a) to decrement it by one. The decref

macro is considerably more complex than the incref one, since it must check whether the reference count

becomes zero and then cause the object’s deallocator, which is a function pointer contained in the object’s

type structure. The type-specific deallocator takes care of decrementing the reference counts for other

objects contained in the object, and so on, if this is a compound object type such as a list. There’s no chance
that the reference count can overflow; at least as many bits are used to hold the reference count as there
are distinct memory locations in virtual memory (assumaeof(long) >= sizeof(char *)).

Thus, the reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer
to an object. In theory, the oject’s reference count goes up by one when the variable is made to point to
it and it goes down by one when the variable goes out of scope. However, these two cancel each other
out, so at the end the reference count hasn’t changed. The only real reason to use the reference count is to
prevent the object from being deallocated as long as our variable is pointing to it. If we know that there

is at least one other reference to the object that lives at least as long as our variable, there is no need to
increment the reference count temporarily. An important situation where this arises is in objects that are
passed as arguments to C functions in an extension module that are called from Python; the call mechanism
guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and holding on to it for a while without

incrementing its reference count. Some other operation might conceivably remove the object from the list,
decrementing its reference count and possible deallocating it. The real danger is that innocent-looking
operations may invoke arbitrary Python code which could do this; there is a code path which allows control

2

to flow back to the user fromRy_DECREF(), so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begPyQfifact _,
PyNumber_, PySequence _or PyMapping). These operations always increment the reference count of
the object they return. This leaves the caller with the responsibility toRsaIDECREF() when they are
done with the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best expelained in teonseiship

of references Note that we talk of owning references, never of owning objects; objects are always shared!
When a function owns a reference, it has to dispose of it properly — either by passing ownership on (usually
to its caller) or by callingPy_DECREF() or Py_XDECREF(). When a function passes ownership of a
reference on to its caller, the caller is said to receimewareference. When no ownership is transferred, the
caller is said tdborrow the reference. Nothing needs to be done for a borrowed reference.

Conversely, when calling a function passes it a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does not. Few functions steal references; the two notable exceptions
arePyList _Setltem() andPyTuple _Setltem() , which steal a reference to the item (but not to the
tuple or list into which the item it put!). These functions were designed to steal a reference because of a
common idiom for populating a tuple or list with newly created objects; for example, the code to create the
tuple (1, 2, "three") could look like this (forgetting about error handling for the moment; a better
way to code this is shown below anyway):

PyObject *t;

t = PyTuple_New(3);

PyTuple_Setltem(t, 0, PyInt_FromLong(1L));
PyTuple_Setltem(t, 1, PyInt FromLong(2L));
PyTuple_Setltem(t, 2, PyString_FromString(“three™));

Incidentally, PyTuple _Setltem() is theonlyway to set tuple item$?ySequence Setltem() and
PyObject _Setltem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple Setltem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written usitylist _New() andPyList _Setltem()
Such code can also ugy/Sequence Setltem() ; this illustrates the difference between the two (the
extraPy_DECREF() calls):

PyObject *I, *x;

| = PyList_New(3);

X = PylInt_FromLong(1L);
PySequence_Setltem(l, 0, x); Py DECREF(X);
X = PylInt_FromLong(2L);
PySequence_Setltem(l, 1, x); Py DECREF(X);
X = PyString_FromString(“three");
PySequence_Setltem(l, 2, x); Py DECREF(X);

You might find it strange that the “recommended” approach takes more code. However, in practice,
you will rarely use these ways of creating and populating a tuple or list. There’'s a generic function,

3

Py_Buildvalue() , that can create most common objects from C values, directed by a “format string”.
For example, the above two blocks of code could be replaced by the following (which also takes care of the
error checking!):

PyObject *t, *I;
t = Py_Buildvalue("(iis)", 1, 2, "three");
| = Py_Buildvalue("fiis]", 1, 2, "three"),

It is much more common to udeyObject _Setltem() and friends with items whose references you

are only borrowing, like arguments that were passed in to the function you are writing. In that case, their
behaviour regarding reference counts is much saner, since you don’t have to increment a reference count
SO you can give a reference away (“have it be stolen”). For example, this function sets all items of a list
(actually, any mutable sequence) to a given item:

int set_all(PyObject *target, PyObject *item)

{ . .
int i, n;
n = PyObject_Length(target);
if (n < 0)
return -1;
for i = 0; i < n i++) {
if (PyObject_Setltem(target, i, item) < 0)
return -1;
}
return O;
}

The situation is slightly different for function return values. While passing a reference to most functions
does not change your ownership responsibilities for that reference, many functions that return a referece to
an object give you ownership of the reference. The reason is simple: in many cases, the returned object
is created on the fly, and the reference you get is the only reference to the object! Therefore, the generic
functions that return object references, liRgObject _Getltem() andPySequence Getltem() ,

always return a new reference (i.e., the caller becomes the owner of the reference).

Itis important to realize that whether you own a reference returned by a function depends on which function
you call only —the plumagsdi.e., the type of the type of the object passed as an argument to the function)
don’t enter into it! Thus, if you extract an item from a list usifyList _Getltem() , you don't own the
reference — but if you obtain the same item from the same list IBy®pquence Getltem() (which
happens to take exactly the same arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers;
once usingPyList _Getltem() , once using?ySequence _Getltem()

long sum_list(PyObject *list)
{

int i, n;

long total = O;

PyObject *item;
n = PyLiSt_SiZG(”St);

if (n < 0)
return -1; /* Not a list */
for (i = 0;i < n; i++) {

item = PyList_Getltem(list, i); /* Can't fail */
if (IPyInt_Check(item)) continue; /* Skip non-integers */
total += PylInt_AsLong(item);

}

return total;

long sum_sequence(PyObject *sequence)

int i, n;
long total = O;
PyObiject *item;
n = PyObject_Size(list);
if (n < 0)
return -1; /* Has no length */
for i = 0; 1 < n; i++) {
item = PySequence_Getltem(list, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyiInt_AsLong(item);
Py DECREF(item); /* Discard reference ownership */
}

return total;

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types
such asnt , long , double andchar * . A few structure types are used to describe static tables used to
list the functions exported by a module or the data attributes of a new object type. These will be discussed
together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled
exceptions are automatically propagated to the caller, then to the caller’s caller, and so on, till they reach the
top-level interpreter, where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API
can raise exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general,

5

when a function encounters an error, it sets an exception, discards any object references that it owns, and
returns an error indicator — usualjULL or -1 . A few functions return a Boolean true/false result, with

false indicating an error. Very few functions return no explicit error indicator or have an ambiguous return
value, and require explicit testing for errors WRgErr _Occurred()

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an un-
threaded application). A thread can be on one of two states: an exception has occurred, or not. The function
PyErr Occurred() can be used to check for this: it returns a borrowed reference to the exception type
object when an exception has occurred, &gl L otherwise. There are a number of functions to set the
exception statePyErr _SetString() is the most common (though not the most general) function to set

the exception state, aRiyErr _Clear() clears the exception state.

The full exception state consists of three objects (all of which calNUeL): the exception type, the
corresponding exception value, and the traceback. These have the same meanings as the Python object
sys.exc _type ,sys.exc _value ,sys.exc _traceback ;however, they are notthe same: the Python
objects represent the last exception being handled by a Pyrthaexcept statement, while the C level
exception state only exists while an exception is being passed on between C functions until it reaches the
Python interpreter, which takes care of transferring gye.exc _type and friends.

(Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python
code is to call the functiosys.exc _nfo() , which returns the per-thread exception state for Python
code. Also, the semantics of both ways to access the exception state have changed so that a function which
catches an exception will save and restore its thread’s exception state so as to preserve the exception state of
its caller. This prevents common bugs in exception handling code caused by an innocent-looking function
overwriting the exception being handled; it also reduces the often unwanted lifetime extension for objects
that are referenced by the stack frames in the traceback.)

As a general principle, a function that calls another function to perform some task should check whether the

called function raised an exception, and if so, pass the exception state on to its caller. It should discards any
object references that it owns, and returns an error indicator, but it shotukkt another exception — that

would overwrite the exception that was just raised, and lose important reason about the exact cause of the
error.

A simple example of detecting exceptions and passing them on is showrsartheequence() example

above. It so happens that that example doesn’t need to clean up any owned references when it detects an
error. The following example function shows some error cleanup. First, to remind you why you like Python,
we show the equivalent Python code:

def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
return item + 1

Here is the corresponding C code, in all its glory:
int incr_item(PyObject *dict, PyObject *key)
{
/* Objects all initialized to NULL for Py_XDECREF */

6

PyObiject *item = NULL, *const one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_Getltem(dict, key);
if (item == NULL) {
/* Handle keyError only: */
if (IPyErr_ExceptionMatches(PyExc_keyError)) goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = Pylnt_FromLong(OL);
if (item == NULL) goto error;
}

const_one = PyInt_FromLong(1L);
if (const_one == NULL) goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL) goto error;

if (PyObject_Setltem(dict, key, incremented_item) < 0) goto error;
rv = 0; /* Success */
/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py XDECREF() to ignore NULL references */
Py_XDECREF(item);

Py _XDECREF(const_one);

Py XDECREF(incremented_item);

return rv; /* -1 for error, O for success */

This example represents an endorsed use of gb® statement in C! It illustrates the use of
PyErr _ExceptionMatches() and PyErr Clear() to handle specific exceptions, and the use
of Py XDECREF() to dispose of owned references that may NLL (note the ‘X’ in the name;
Py_DECREF() would crash when confronted withMULL reference). It is important that the variables
used to hold owned references are initializedNtdLL for this to work; likewise, the proposed return value
is initialized to-1 (failure) and only set to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have
to worry about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality

7

of the interpreter can only be used after the interpreter has been initialized.

The basic initialization function iBy_Initialize() . This initializes the table of loaded modules, and
creates the fundamental modulebuiltin -~ __, _main _ andsys . It also initializes the module search
path gys.path).

Py_Initialize() does not set the “script argument listsyg.argv). If this variable is
needed by Python code that will be executed later, it must be set explicity with a call to
PySys _SetArgv(argc, argv) subsequent to the call ®y_Initialize()

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py_Initialize() calculates the module search path based upon its best guess for the location of the
standard Python interpreter executable, assuming that the Python library is found in a fixed location relative
to the Python interpreter executable. In particular, it looks for a directory ndiokpgthonl.5 (re-
placingl.5 with the current interpreter version) relative to the parent directory where the executable named
python is found on the shell command search path (the environment vai&#éH.

For instance, if the Python executable is foundusr/local/bin/python , it will assume that the
libraries are infusr/local/lib/pythonl1.5 . (In fact, this particular path is also the “fallback” lo-
cation, used when no executable file narpgthon is found alongdPATH) The user can override this
behavior by setting the environment variaBlRY THONHOME&r insert additional directories in front of the
standard path by settiffPYTHONPATH

The embedding application can steer the search by cafingetProgramName(file) before calling

Py _Initialize() . Note that$PYTHONHOM#ll overrides this anéPYTHONPATI$ still inserted in

front of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath() , Py_GetPrefix() , Py_GetExecPrefix() , Py_GetProgramFullPath() (all
defined in Modules/getpath.c).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over

(make another call t@y_Initialize()) or the application is simply done with its use of Python and
wants to free all memory allocated by Python. This can be accomplished by cBfirigjnalize()
The functionPy_IsInitialized() returns true iff Python is currently in the initialized state. More

information about these functions is given in a later chapter.

Chapter 2

Basic Utllities

XXX These utilities should be moved to some other section...

void Py _FatalError(char*message
Print a fatal error message and kill the process. No cleanup is performed. This function should only
be invoked when a condition is detected that would make it dangerous to continue using the Python
interpreter; e.g., when the object administration appears to be corrupted. On Unix, the standard C
library functionabort() is called which will attempt to produce adre ' file.

void Py _Exit(intstatug
Exit the current process. This caly_Finalize() and then calls the standard C library function

exit(0)
int Py _AtExit(void (*func) ()
Register a cleanup function to be called Py_Finalize() . The cleanup function will be called

with no arguments and should return no value. At most 32 cleanup functions can be registered. When
the registration is successfi®y AtExit returns 0; on failure, it returns -1. The cleanup function
registered last is called first. Each cleanup function will be called at most once.

Chapter 3

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void

void

void

void

Py _INCREF(PyObject*q
Increment the reference count for object The object must not bMULL, if you aren’t sure that it
isn't NULL, usePy_XINCREF() .

Py XINCREF(PyObiject*g
Increment the reference count for objectThe object may b&lULL, in which case the macro has no
effect.

Py _DECREFPyObject*q

Decrement the reference count for objectThe object must not bRULL; if you aren’t sure that it
isn't NULL, usePy_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation
function (which must not b&IULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class
instance with a_del _() method is deallocated). While exceptions in such code are not propagated,
the executed code has free access to all Python global variables. This means that any object that is
reachable from a global variable should be in a consistent state feyoBBECREF() is invoked.

For example, code to delete an object from a list should copy a reference to the deleted object in
a temporary variable, update the list data structure, and theRP¢dlECREF() for the temporary
variable.

Py XDECREFPyObject*q
Decrement the reference count for objecthe object may b&lULL, in which case the macro has no
effect; otherwise the effect is the same asRgr DECREF(), and the same warning applies.

The following functions or macros are only for internal usBy_Dealloc , _Py_ForgetReference ,
_Py_NewReference , as well as the global variabl®y_RefTotal

XXX Should mention PyMalloc(), PyRealloc(), PyFree(), PyMemMalloc(), PyMemRealloc(),
PyMemFree(), PyMemNEW(), PyMemRESIZE(), PyMemDEL(), PyMemXDEL().

10

Chapter 4

Exception Handling

The functions in this chapter will let you handle and raise Python exceptions. It is important to under-
stand some of the basics of Python exception handling. It works somewhat like thefdmix variable:

there is a global indicator (per thread) of the last error that occurred. Most functions don’t clear this on
success, but will set it to indicate the cause of the error on failure. Most functions also return an error indi-
cator, usuallyNULL if they are supposed to return a pointer, or -1 if they return an integer (exception: the
PyArg _Parse*() functions return 1 for success and O for failure). When a function must fail because
some function it called failed, it generally doesn't set the error indicator; the function it called already set it.

The error indicator consists of three Python objects corresponding to the Python vasiaes _type ,
sys.exc _value andsys.exc _traceback . API functions exist to interact with the error indicator in
various ways. There is a separate error indicator for each thread.

void PyErr _Print()
Print a standard tracebackggs.stderr ~ and clear the error indicator. Call this function only when
the error indicator is set. (Otherwise it will cause a fatal error!)

PyObject * PyErr _Occurred()
Test whether the error indicator is set. If set, return the exceptjpm (the first argument to the last
call to one of thePyErr _Set*() functions or toPyErr _Restore()). If not set, returrNULL
You do not own a reference to the return value, so you do not neeg ECREF() it. Note: do not
compare the return value to a specific exception;Ryderr _ExceptionMatches instead, shown

below.

int PyErr _ExceptionMatches(PyObject *exg
(NEW in 1.5a4!)
Equivalent toPyErr _GivenExceptionMatches(PyErr _Occurred(), exg . This should

only be called when an exception is actually set.

int PyErr _GivenExceptionMatches(PyObject *given, PyObiject *e¥c
(NEW in 1.5a4!) Return true if thegivenexception matches the exceptionerc If excis a class
object, this also returns true wheivenis a subclass. éxcis a tuple, all exceptions in the tuple (and
recursively in subtuples) are searched for a match. This should only be called when an exception is
actually set.

void PyErr _NormalizeException(PyObject**exc, PyObject**val, PyObject**fb
(NEW in 1.5a4!) Under certain circumstances, the values returne@yfyrr Fetch() below can

11

be “unnormalized”, meaning th&gxcis a class object buwal is not an instance of the same class.
This function can be used to instantiate the class in that case. If the values are already normalized,
nothing happens.

void PyErr _Clear()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr _Fetch(PyObject **ptype, PyObject **pvalue, PyObject **ptraceback
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is
not set, set all three variablesNdJLL If it is set, it will be cleared and you own a reference to each
object retrieved. The value and traceback object maybEL even when the type object is ndote:
this function is normally only used by code that needs to handle exceptions or by code that needs to
save and restore the error indicator temporarily.

void PyErr _Restore(PyObiject *type, PyObiject *value, PyObiject *traceback
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If
the objects ar&NULL, the error indicator is cleared. Do not pashldLL type and norNULL value
or traceback. The exception type should be a string or class; if it is a class, the value should be an
instance of that class. Do not pass an invalid exception type or value. (Violating these rules will cause
subtle problems later.) This call takes away a reference to each object, i.e. you must own a reference
to each object before the call and after the call you no longer own these references. (If you don’t
understand this, don’t use this function. | warned yduigte: this function is normally only used by
code that needs to save and restore the error indicator temporarily.

void PyErr _SetString(PyObiject *type, char *messape
This is the most common way to set the error indicator. The first argument specifies the exception
type; it is normally one of the standard exceptions, eRgExc _RuntimeError . You need not
increment its reference count. The second argument is an error message; it is converted to a string
object.

void PyErr _SetObject(PyObiject *type, PyObject *valye
This function is similar tdPyErr _SetString() but lets you specify an arbitrary Python object for
the “value” of the exception. You need not increment its reference count.

void PyErr _SetNone(PyObiject *typé
This is a shorthand fdPyErr _SetString(type Py _None.

int PyErr _BadArgument()
This is a shorthand fdPyErr _SetString(PyExc _TypekError, message, wheremessagn-
dicates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject * PyErr _NoMemory()
This is a shorthand foPyErr _SetNone(PyExc _MemoryError) ; it returnsNULL so an object
allocation function can writeeturn PyErr _NoMemory(); when it runs out of memory.

PyObject * PyErr _SetFromErrmo(PyObject *typé
This is a convenience function to raise an exception when a C library function has returned an error
and set the C variablerrno . It constructs a tuple object whose first item is the integeno value
and whose second item is the corresponding error message (gottestfernor()), and then
callsPyErr _SetObject(type objec). On UNix, when theerrno value iSEINTR, indicating
an interrupted system call, this calyErr _CheckSignals() , and if that set the error indicator,
leaves it set to that. The function always retuNidLL, so a wrapper function around a system call

12

can writereturn PyErr _NoMemory(); when the system call returns an error.

void PyErr _BadInternalCall()
This is a shorthand fdPyErr _SetString(PyExc _TypekError, message, wheremessagén-
dicates that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument.
It is mostly for internal use.

int PyErr _CheckSignals()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the
processes and if so, invokes the corresponding signal handler. dighal module is supported,
this can invoke a signal handler written in Python. In all cases, the default effeSIGNT is to
raise theKeyboadInterrupt exception. If an exception is raised the error indicator is set and the
function returns 1; otherwise the function returns 0. The error indicator may or may not be cleared if
it was previously set.

void PyErr _Setinterrupt()
This function is obsolete (XXX or platform dependent?). It simulates the effectSdGINT signal
arriving — the next tim@&yErr _CheckSignals() s called,KeyboadInterrupt will be raised.

PyObject * PyErr _NewException(char*name, PyObject *base, PyObiject *dict
(NEW in 1.5a4!) This utility function creates and returns a new exception object.nEneeargument
must be the name of the new exception, a C string of the fowwdule.class . Thebaseanddict
arguments are normallJULL Normally, this creates a class object derived from the root for all
exceptions, the built-in nantexception (accessible in C aByExc _Exception). In this case the
_module __ attribute of the new class is set to the first part (up to the last dot) ofdheeargument,
and the class name is set to the last part (after the last dot). When the user has speciffed the
command line option to use string exceptions, for backward compatibility, or whérasisargument
is not a class object (and nNtJLL), a string object created from the entir@ameargument is returned.
The baseargument can be used to specify an alternate base classlidlagument can be used to
specify a dictionary of class variables and methods.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose nantegExe._ followed by

the Python exception name. These have the type
PyObject * ; they are all string objects. For completeness, here are all the variables (the first four are
new in Python 1.5a4)PyExc Exception , PyExc StandardError , PyExc ArithmeticError ,

PyExc _LookupError PyExc _AssertionError , PyExc _AttributeError ,
PyExc _EOFError , PyExc _FloatingPointError , PyExc _IOError , PyExc_ImportError
PyExc _IndexError , PyExc _KeyError , PyExc _Keyboardinterrupt , PYyExc _MemoryError
PyExc NameError , PyExc _OverflowError , PyExc _RuntimeError , PyExc _SyntaxError
PyExc _SystemError , PyExc_SystemExit , PyExc_TypeError , PyExc_ValueError

PyExc _ZeroDivisionError

13

Chapter 5
Utilities

The functions in this chapter perform various utility tasks, such as parsing function arguments and construct-
ing Python values from C values.

5.1 OS Utilities

int Py _FdlsInteractive(FILE *fp, char *filenamé
Return true (nonzero) if the standard 1/O fifp with namefilename is deemed interac-
tive. This is the case for files for whicisatty(fileno(fp)) is true. If the global flag
Py_InteractiveFlag is true, this function also returns true if tieame pointer isNULL or if
the name is equal to one of the stringstdin>" or"???" .

long PyOS _GetLastModificationTime(char *filenameg
Return the time of last modification of the filidlename . The result is encoded in the same way as
the timestamp returned by the standard C library functiore()

5.2 Importing modules

PyObject * Pylmport _ImportModule(char*nameg
This is a simplified interface t®ylmport _ImportModuleEx below, leaving theglobals and
locals arguments set thlULL When thenameargument contains a dot (i.e., when it specifies a
submodule of a package), tfimlist argument is set to the ligt*’] so that the return value is
the named module rather than the top-level package containing it as would otherwise be the case.
(Unfortunately, this has an additional side effect whamein fact specifies a subpackage instead of
a submodule: the submodules specified in the packagdls __ variable are loaded.) Return a new
reference to the imported module, MULL with an exception set on failure (the module may still be
created in this case).

PyObject * Pylmport _ImportModuleEx(char *name, PyObiject *globals, PyObject *locals, PyObject *fronl
(NEW in 1.5a4!) Import a module. This is best described by referring to the built-in Python function
_import() _, as the standardimport _ () function calls this function directly.

The return value is a new reference to the imported module or top-level packageLawith an

14

exception set on failure (the module may still be created in this case). Likeifigport _() , the
return value when a submodule of a package was requested is normally the top-level package, unless
a non-emptyfromlist was given.

PyObject * Pylmport _Import(PyObject *namg
This is a higher-level interface that calls the current “import hook function”. It invokes the

_import _() function from the_builtins __ of the current globals. This means that the im-
port is done using whatever import hooks are installed in the current environment, egxelsy or
ihooks .

PyObject * Pylmport _ReloadModule(PyObject*m)
Reload a module. This is best described by referring to the built-in Python funetiond() , as
the standardeload() function calls this function directly. Return a new reference to the reloaded
module, oNULLwith an exception set on failure (the module still exists in this case).

PyObject * Pylmport _AddModule(char*namg
Return the module object corresponding to a module hame ndheargument may be of the form
package.module). First check the modules dictionary if there’s one there, and if not, create a new
one and insert in in the modules dictionary. Because the former action is most common, this does not
return a new reference, and you do not own the returned reference. REfluinwith an exception
set on failure.

PyObject * Pylmport _ExecCodeModule(char*name, PyObject *cp
Given a module name (possibly of the fopackage.module) and a code object read from a
Python bytecode file or obtained from the built-in functicompile() , load the module. Return a
new reference to the module object,MLL with an exception set if an error occurred (the module
may still be created in this case). (This function would reload the module if it was already imported.)

long Pylmport _GetMagicNumber()
Return the magic number for Python bytecode files (a.byc and.pyo files). The magic number
should be present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject * Pylmport _GetModuleDict()
Return the dictionary used for the module administration (ady¢a.modules). Note that this is a
per-interpreter variable.

void _Pylmport _Init()
Initialize the import mechanism. For internal use only.

void Pylmport _Cleanup()
Empty the module table. For internal use only.

void _Pylmport _Fini()
Finalize the import mechanism. For internal use only.

extern PyObject * _Pylmport _FindExtension(char*, char *)
For internal use only.

extern PyObject * _Pylmport _FixupExtension(char*, char *)
For internal use only.

int Pylmport _ImportFrozenModule(char*)
Load a frozen module. Returh for successp if the module is not found, andl with an ex-
ception set if the initialization failed. To access the imported module on a successful load, use

15

Pylmport _ImportModule()) . (Note the misnomer — this function would reload the module
if it was already imported.)

struct _frozen
This is the structure type definition for frozen module descriptors, as generatedftsethe utility

(see Tools/freeze/ " in the Python source distribution). Its definition is:
struct _frozen {

char *name;

unsigned char *code;

int size;
J%

struct _frozen * Pylmport _FrozenModules
This pointer is initialized to point to an array struct ~ _frozen records, terminated by one whose
members are aNULLor zero. When a frozen module is imported, it is searched in this table. Third
party code could play tricks with this to provide a dynamically created collection of frozen modules.

16

Chapter 6
Debugging

XXX Explain Py.DEBUG, Py TRACE REFS, PyREF.DEBUG.

17

Chapter 7

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will
not let you interact in a more detailed way with the interpreter.

int PyRun _AnyFile(FILE*, char *)

int PyRun _SimpleString(char?*)

int PyRun _SimpleFile(FILE*, char *)

int PyRun _InteractiveOne(FILE *, char *)

int PyRun _InteractiveLoop(FILE *, char *)

struct _node * PyParser _SimpleParseString(char *, int)
struct _node * PyParser _SimpleParseFile(FILE *, char *, int)
PyObject *PyRun _String(char *, int, PyObject *, PyObject)
PyObject *PyRun _File(FILE *, char *, int, PyObject *, PyObject ¥
PyObject *Py _CompileString(char*, char *, int)

18

Chapter 8

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of
object types (e.g. all numerical types, or all sequence types). When used on object types for which they do
not apply, they will flag a Python exception.

8.1 Object Protocol

int PyObject _Print(PyObiject *o, FILE *fp, int flag}
Print an objecb, on filefp . Returns -1 on error The flags argument is used to enable certain printing
options. The only option currently supportedPg_Print _RAW

int PyObject _HasAttrString(PyObject *o, char *atttnamg
Returns 1 if o has the attribute attame, and O otherwise. This is equivalent to the Python expression:
hasattr(o,attr _name). This function always succeeds.

PyObject* PyObject _GetAttrString(PyObject *o, char *atttnamg
Retrieve an attribute named attame from object 0. Returns the attribute value on succes¢Jot
on failure. This is the equivalent of the Python expressmattr _name.

int PyObject _HasAttr(PyObject *o, PyObject *attmame¢
Returns 1 if o has the attribute attame, and O otherwise. This is equivalent to the Python expression:
hasattr(o,attr _name). This function always succeeds.
PyObject* PyObject _GetAttr(PyObject *o, PyObject *attmameg
Retrieve an attribute named attame from object 0. Returns the attribute value on succes¢Jot
on failure. This is the equivalent of the Python expression: onatitne.

int PyObject _SetAttrString(PyObject *o, char *atttname, PyObject *v
Set the value of the attribute namatfr _name, for objecto, to the valuev. Returns -1 on failure.
This is the equivalent of the Python statemenattr _name=v.

int PyObject _SetAttr(PyObject *o, PyObject *attmame, PyObject *v
Set the value of the attribute namatfr _name, for objecto, to the valuev. Returns -1 on failure.
This is the equivalent of the Python statemenattr _name=v.

int PyObject _DelAttrString(PyObject *o, char *atttnamg
Delete attribute namealtr _name, for objecto. Returns -1 on failure. This is the equivalent of the

19

Python statementel o.attr _name.

int PyObject _DelAttr(PyObject *o, PyObject *attmame¢
Delete attribute namealtr _name, for objecto. Returns -1 on failure. This is the equivalent of the
Python statementel o.attr _name.

int PyObject _Cmp(PyObject *o1, PyObject *02, int *resylt
Compare the values afl ando2 using a routine provided bgl, if one exists, otherwise with a
routine provided by?2. The result of the comparison is returned@sult . Returns -1 on failure.
This is the equivalent of the Python statemestult=cmp(01,02)

int PyObject _Compare(PyObject *01, PyObject *oR
Compare the values afl ando2 using a routine provided bgl, if one exists, otherwise with a
routine provided by?2. Returns the result of the comparison on success. On error, the value returned
is undefined. This is equivalent to the Python expressiom(o1,02)

PyObject* PyObject _Repr(PyObject*g
Compute the string representation of objectReturns the string representation on sucdstH,L.on
failure. This is the equivalent of the Python expressimpr(o) . Called by therepr() built-in
function and by reverse quotes.

PyObject* PyObject _Str(PyObject *g
Compute the string representation of objaxt,Returns the string representation on succli$d, L
on failure. This is the equivalent of the Python expressiino) . Called by thestr() built-in
function and by th@rint statement.

int PyCallable _Check(PyObject *g
Determine if the objeab, is callable. Return 1 if the object is callable and 0 otherwise. This function
always succeeds.

PyObject* PyObject _CallObject(PyObiject *callableobject, PyObject *args
Call a callable Python objeciallable _object , with arguments given by the tup&gs . If no
arguments are needed, then args mabéL Returns the result of the call on successNoi_Lon
failure. This is the equivalent of the Python expressimpply(o, args)

PyObject* PyObject _CallFunction(PyObiject *callableobject, char *format, .).
Call a callable Python objecillable _object , with a variable number of C arguments. The C
arguments are described using a mkvalue-style format string. The format mdiylde indicating
that no arguments are provided. Returns the result of the call on succédd|.bon failure. This is
the equivalent of the Python expressiamply(o,args)

PyObject* PyObject _CallMethod(PyObject *o, char *m, char *format,).
Call the method nameunhof objecto with a variable number of C arguments. The C arguments are
described by a mkvalue format string. The format mayNddL L, indicating that no arguments are
provided. Returns the result of the call on succesdNOLL on failure. This is the equivalent of

the Python expressiorn.method(args) . Note that Special method names, such aadd __",
"__getitem __", and so on are not supported. The specific abstract-object routines for these must be
used.

int PyObject _Hash(PyObject *g
Compute and return the hash value of an objedDn failure, return -1. This is the equivalent of the
Python expressiorhash(o) .

20

int PyObject _IsTrue(PyObject*g
Returns 1 if the objeab is considered to be true, and 0 otherwise. This is equivalent to the Python
expressionnot not o . This function always succeeds.

PyObject* PyObject _Type(PyObject*g
On success, returns a type object corresponding to the object type of objém failure, returns
NULL This is equivalent to the Python expressitype(0)

int PyObject _Length(PyObject*g
Return the length of objeai. If the objecto provides both sequence and mapping protocols, the
sequence length is returned. On error, -1 is returned. This is the equivalent to the Python expression:
len(o)

PyObject* PyObject _Getltem(PyObject*o, PyObject *key
Return element ob corresponding to the objekey or NULLon failure. This is the equivalent of the
Python expressioro[key]

int PyObject _Setltem(PyObiject *o, PyObject *key, PyObject v
Map the objectkey to the valuev. Returns -1 on failure. This is the equivalent of the Python
statemento[key]=v

int PyObject _Delltem(PyObiject *o, PyObject *key, PyObject v
Delete the mapping fokey from *o. Returns -1 on failure. This is the equivalent of the Python
statementdel o[key]

8.2 Number Protocol

int PyNumber _Check(PyObject *9
Returns 1 if the objecb provides numeric protocols, and false otherwise. This function always
succeeds.

PyObject* PyNumber _Add(PyObject *ol, PyObject *oR
Returns the result of addingl and o2, or null on failure. This is the equivalent of the Python
expressionnl+o2.

PyObject* PyNumber _Subtract(PyObject*ol, PyObject *oR
Returns the result of subtractim@ from o1, or null on failure. This is the equivalent of the Python
expressionnl-o02 .

PyObject* PyNumber _Multiply(PyObject *ol, PyObject *oR
Returns the result of multiplyingl ando2, or null on failure. This is the equivalent of the Python
expressionnl*o2 .

PyObject* PyNumber _Divide(PyObject*ol, PyObject *opR
Returns the result of dividingl by 02, or null on failure. This is the equivalent of the Python
expressionnl/o2 .

PyObject* PyNumber _Remainder(PyObject*ol, PyObject *op
Returns the remainder of dividingll by 02, or null on failure. This is the equivalent of the Python
expressionnl1%o02

PyObject* PyNumber _Divmod(PyObject *ol1, PyObject *oR

21

See the built-in function divmod. ReturmM$ULL on failure. This is the equivalent of the Python
expressiondivmod(o1,02)

PyObject* PyNumber _Power(PyObject*ol, PyObject *02, PyObject *»3
See the built-in function pow. ReturtdUJLL on failure. This is the equivalent of the Python expres-
sion: pow(01,02,03) , whereo3 is optional.

PyObject* PyNumber _Negative(PyObject*g
Returns the negation @f on success, or null on failure. This is the equivalent of the Python expres-
sion:-o .

PyObject* PyNumber _Positive(PyObject *g
Returnso on success, ddULLon failure. This is the equivalent of the Python expressiam.

PyObject* PyNumber _Absolute(PyObject*g
Returns the absolute value of or null on failure. This is the equivalent of the Python expression:
abs(o) .

PyObject* PyNumber _nvert(PyObject*q
Returns the bitwise negation ofon success, ddULLon failure. This is the equivalent of the Python
expression:o .

PyObject* PyNumber _Lshift(PyObject *01, PyObject *oR
Returns the result of left shiftingl by 02 on success, dkULLon failure. This is the equivalent of
the Python expressioml << 02.

PyObject* PyNumber _Rshift(PyObject*01, PyObject *oR
Returns the result of right shiftingl by 02 on success, ddULLon failure. This is the equivalent of
the Python expressioml >> 02.

PyObject* PyNumber _And(PyObject *ol1, PyObject *oR
Returns the result of "andingd2 ando2 on success anbULL on failure. This is the equivalent of
the Python expressioml and o2 .

PyObject* PyNumber _Xor(PyObject *0l1, PyObject *oR
Returns the bitwise exclusive or ofl by 02 on success, ddULL on failure. This is the equivalent
of the Python expressioml”™ 02 .

PyObject* PyNumber _Or(PyObject *01, PyObject *oR
Returns the result adl ando2 on success, dlULLon failure. This is the equivalent of the Python
expressionpl or o2 .

PyObject* PyNumber _Coerce(PyObject *01, PyObject *oR
This function takes the addresses of two variables of By@bject*
If the objects pointed to bypl and*p2 have the same type, increment their reference count
and return O (success). If the objects can be converted to a common numeric type, tpplace
and *p2 by their converted value (with 'new’ reference counts), and return 0. If no conver-
sion is possible, or if some other error occurs, return -1 (failure) and don’t increment the refer-
ence counts. The caPyNumber_Coerce(&ol, &02) is equivalent to the Python statement
0l, 02 = coerce(ol, 02)

PyObject* PyNumber _Int(PyObject*g
Returns thed converted to an integer object on succes\OLL on failure. This is the equivalent of
the Python expressiofnt(o)

22

PyObject* PyNumber _Long(PyObject*g
Returns the converted to a long integer object on succes®@t Lon failure. This is the equivalent
of the Python expressiotong(o)

PyObject* PyNumber _Float(PyObject*g
Returns theo converted to a float object on successN&fLL on failure. This is the equivalent of the
Python expressiorfloat(o)

8.3 Sequence protocol

int PySequence _Check(PyObject *g
Return 1 if the object provides sequence protocol, and 0 otherwise. This function always succeeds.

PyObject* PySequence _Concat(PyObject*ol, PyObject *oR
Return the concatenation ol ando2 on success, amdULLon failure. This is the equivalent of the
Python expressiorn1+02.

PyObject* PySequence _Repeat(PyObject *o, int count
Return the result of repeating sequence obgecount times, orNULL on failure. This is the
equivalent of the Python expressiartcount .

PyObject* PySequence _Getltem(PyObject*o, int)
Return the ith element af, or NULL on failure. This is the equivalent of the Python expression:
ofi]

PyObject* PySequence _GetSlice(PyObject*o, intil, intid
Return the slice of sequence objedbetweenil andi2 , or NULLon failure. This is the equivalent
of the Python expression|il:i2]

int PySequence _Setltem(PyObject *o, int i, PyObject *y
Assign objectv to thei th element ofb. Returns -1 on failure. This is the equivalent of the Python
statementol[i]=v

int PySequence Delltem(PyObject *o, int)
Delete thei th element of object/. Returns -1 on failure. This is the equivalent of the Python
statementdel Ofi]

int PySequence _SetSlice(PyObject*o, intil, inti2, PyObject *v
Assign the sequence objectio the slice in sequence objextfromil toi2 . This is the equivalent
of the Python statemer[il:i2]=v

int PySequence _DelSlice(PyObject*o, intil, intij
Delete the slice in sequence objexifromil toi2 . Returns -1 on failure. This is the equivalent of
the Python statementtel 0[il1:i2]

PyObject* PySequence _Tuple(PyObject*g
Returns the as a tuple on success, aNtLL on failure. This is equivalent to the Python expression:
tuple(o)

int PySequence _Count(PyObiject *o, PyObject *value
Return the number of occurrences walue on o, that is, return the number of keys for
which o[key]==value . On failure, return -1. This is equivalent to the Python expression:

23

o.count(value)

int PySequence _In(PyObject *o, PyObject *value
Determine ifo containsvalue . If an item ino is equal tovalue , return 1, otherwise return 0. On
error, return -1. This is equivalent to the Python expressiatue in o

int PySequence _Index(PyObject*o, PyObject *value
Return the first index for whicb[i]J==value . On error, return -1. This is equivalent to the Python
expressionn.index(value)

8.4 Mapping protocol

int PyMapping _Check(PyObject *g
Return 1 if the object provides mapping protocol, and O otherwise. This function always succeeds.

int PyMapping _Length(PyObject*g
Returns the number of keys in objerbn success, and -1 on failure. For objects that do not provide
sequence protocol, this is equivalent to the Python expressin(o)

int PyMapping _DelltemString(PyObject *o, char *key
Remove the mapping for objekéy from the objecb. Return -1 on failure. This is equivalent to the
Python statementlel o[key]

int PyMapping _Delltem(PyObject *o, PyObject *key
Remove the mapping for objekéy from the objecb. Return -1 on failure. This is equivalent to the
Python statementlel o[key]

int PyMapping _HasKeyString(PyObject *o, char *key
On success, return 1 if the mapping object has thekiegy and 0 otherwise. This is equivalent to the
Python expressiorn.has _key(key) . This function always succeeds.

int PyMapping _HasKey(PyObiject *o, PyObject *key
Return 1 if the mapping object has the KHeyy and O otherwise. This is equivalent to the Python
expressionn.has _key(key) . This function always succeeds.

PyObject* PyMapping _Keys(PyObject *q
On success, return a list of the keys in objectOn failure, returrNULL This is equivalent to the
Python expressiorn.keys()

PyObject* PyMapping _Values(PyObject*g
On success, return a list of the values in obgecOn failure, returrNULL This is equivalent to the
Python expressiorp.values()

PyObject* PyMapping _Items(PyObject*g
On success, return a list of the items in objectwhere each item is a tuple containing a key-value
pair. On failure, returifNULL This is equivalent to the Python expressioritems()

int PyMapping _Clear(PyObject*g
Make objecto empty. Returns 1 on success and 0 on failure. This is equivalent to the Python state-
ment:for key in o.keys(): del o[key]

PyObject* PyMapping _GetltemString(PyObject *o, char *key
Return element ob corresponding to the objekey or NULLon failure. This is the equivalent of the

24

Python expressior[key]

PyObject* PyMapping _SetltemString(PyObject *o, char *key, PyObiject jv
Map the objeckey to the valuev in objecto. Returns -1 on failure. This is the equivalent of the
Python statement[key]=v

8.5 Constructors

PyObject* PyFile _FromString(char *file_.name, char *mode
On success, returns a new file object that is opened on the file givie by name, with a file mode
given bymode, wheremode has the same semantics as the standard C routine, fopen. On failure,
return -1.

PyObject* PyFile _FromFile(FILE *fp, char *file_name, char *mode, int closen.del)
Return a new file object for an already opened standard C file poiptei file namefile _name,
and open modenode, must be provided as well as a flagipse _on _del , that indicates whether
the file is to be closed when the file object is destroyed. On failure, return -1.

PyObject* PyFloat _FromDouble(doubley
Returns a new float object with the valueon success, andULL on failure.

PyObject* Pyint _FromLong(longV)
Returns a new int object with the valueon success, andULL on failure.

PyObiject* PyList New(intI)
Returns a new list of length on success, andULL on failure.

PyObject* PyLong _FromLong(longV)
Returns a new long object with the valuen success, andULL on failure.

PyObject* PyLong _FromDouble(doubley
Returns a new long object with the valueon success, andULL on failure.

PyObject* PyDict _New()
Returns a new empty dictionary on success, l[dbidL L on failure.

PyObject* PyString _FromString(char *v)
Returns a new string object with the valuen success, andULL on failure.

PyObiject* PyString _FromStringAndSize(char*v, intl)
Returns a new string object with the valend lengtH on success, andULLon failure.

PyObject* PyTuple _New(intl)
Returns a new tuple of lengthon success, andULL on failure.

25

Chapter 9

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the
wrong type is not a good idea; if you receive an object from a Python program and you are not sure that
it has the right type, you must perform a type check first; e.g. to check that an object is a dictionary, use
PyDict _Check() .

26

Chapter 10

Defining New Object Types

PyObject * _PyObject New(PyTypeObject *type

PyObject * _PyObject _NewVar(PyTypeObiject *type, int size
TYPE _PyObject NEW{YPE, PyTypeObjec)*

TYPE _PyObject NEWAR(TYPE, PyTypeObject *, int sige

27

Chapter 11

Initialization, Finalization, and Threads

void

Py _Initialize()

Initialize the Python interpreter. In an application embedding Python, this should be called be-
fore using any other Python/C API functions; with the exceptiorPgiSetProgramName() ,
PyEval _InitThreads() , PyEval _ReleaselLock() ,andPyEval _AcquireLock() . This
initializes the table of loaded modulesy6.modules), and creates the fundamental modules
_builtin ~ _, _main __ andsys . It also initializes the module search pa#lyg.path). It does

not setsys.argv ; usePySys _SetArgv() for that. This is a no-op when called for a second time
(without callingPy_Finalize() first). There is no return value; itis a fatal error if the initialization
fails.

int Py _lsInitialized()

void

(NEW in 1.5a4!) Return true (nonzero) when the Python interpreter has been initialized, false (zero)

if not. After Py_Finalize() is called, this returns false uniy _Initialize() is called again.

Py _Finalize()

(NEW in 1.5a3!) Undo all initializations made byPy_Initialize() and subsequent use of
Python/C API functions, and destroy all sub-interpreters Bse®ewlnterpreter() below) that

were created and not yet destroyed since the last c&lytinitialize() . Ideally, this frees all
memory allocated by the Python interpreter. This is a no-op when called for a second time (with-
out callingPy_Initialize() again first). There is no return value; errors during finalization are
ignored.

This function is provided for a number of reasons. An embedding application might want to restart
Python without having to restart the application itself. An application that has loaded the Python
interpreter from a dynamically loadable library (or DLL) might want to free all memory allocated
by Python before unloading the DLL. During a hunt for memory leaks in an application a developer
might want to free all memory allocated by Python before exiting from the application.

Bugs and caveatsThe destruction of modules and objects in modules is done in random order; this
may cause destructorsdel __ methods) to fail when they depend on other objects (even functions) or
modules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts
of memory allocated by the Python interpreter may not be freed (if you find a leak, please report
it). Memory tied up in circular references between objects is not freed. Some memory allocated by
extension modules may not be freed. Some extension may not work properly if their initialization
routine is called more than once; this can happen if an applcation Rgllsitialize() and

28

Py _Finalize() more than once.

PyThreadState * Py _Newlnterpreter()

void

void

(NEW in 1.5a3!) Create a new sub-interpreter. This is an (almost) totally separate environment for
the execution of Python code. In particular, the new interpreter has separate, independent versions
of all imported modules, including the fundamental modulesiiltin -~ __, __main _ andsys . The

table of loaded modulesys.modules) and the module search paty§.path) are also sepa-

rate. The new environment has sgs.argv variable. It has new standard I/O stream file objects
sys.stdin , sys.stdout andsys.stderr (however these refer to the same underlyigE
structures in the C library).

The return value points to the first thread state created in the new sub-interpreter. This thread state is
made the current thread state. Note that no actual thread is created; see the discussion of thread states
below. If creation of the new interpreter is unsuccessSWWLLis returned; no exception is set since

the exception state is stored in the current thread state and there may not be a current thread state.
(Like all other Python/C API functions, the global interpreter lock must be held before calling this
function and is still held when it returns; however, unlike most other Python/C API functions, there
needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular exten-
sion is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled
away. When the same extension is imported by another (sub-)interpreter, a new module is initialized
and filled with the contents of this copy; the extensianis function is not called. Note that this is
different from what happens when as extension is imported after the interpreter has been completely
re-initialized by callingPy_Finalize() and Py _Initialize() ; in that case, the extension’s

init functionis called again.

Bugs and caveatBecause sub-interpreters (and the main interpreter) are part of the same process, the
insulation between them isn't perfect — for example, using low-level file operationsdiktose()

they can (accidentally or maliciously) affect each other’s open files. Because of the way extensions are
shared between (sub-)interpreters, some extensions may not work properly; this is especially likely
when the extension makes use of (static) global variables, or when the extension manipulates its mod-
ule’s dictionary after its initialization. It is possible to insert objects created in one sub-interpreter
into a namespace of another sub-interpreter; this should be done with great care to avoid sharing
user-defined functions, methods, instances or classes between sub-interpreters, since import opera-
tions executed by such objects may affect the wrong (sub-)interpreter’s dictionary of loaded modules.
(XXX This is a hard-to-fix bug that will be addressed in a future release.)

Py _EndIinterpreter(PyThreadState *tstaje

(NEW in 1.5a3!) Destroy the (sub-)interpreter represented by the given thread state. The given thread
state must be the current thread state. See the discussion of thread states below. When the call returns,
the current thread state BULL All thread states associated with this interpreted are destroyed.
(The global interpreter lock must be held before calling this function and is still held when it returns.)
Py_Finalize() will destroy all sub-interpreters that haven’t been explicitly destroyed at that point.

Py _SetProgramName(char*namg

(NEW in 1.5a3!") This function should be called befoRy Initialize() is called for the first

time, if it is called at all. It tells the interpreter the value of #agv[0] argument to thenain()

function of the program. This is used BPy_GetPath() and some other functions below to find the
Python run-time libraries relative to the interpreter executable. The default vdlpgtion" . The
argument should point to a zero-terminated character string in static storage whose contents will not

29

change for the duration of the program’s execution. No code in the Python interpreter will change the
contents of this storage.

char * Py _GetProgramName()
Return the program name set wity_SetProgramName() , or the default. The returned string
points into static storage; the caller should not modify its value.

char * Py _GetPrefix()
Return the “prefix” for installed platform-independent files. This is derived through a number of
complicated rules from the program name set Wi SetProgramName() and some environ-
ment variables; for example, if the program nam®istr/local/bin/python” , the prefix is
"lusr/local" . The returned string points into static storage; the caller should not modify its value.
This corresponds to tharefix ~ variable in the top-leveMakefile and the--prefix argument
to theconfigure script at build time. The value is available to Python codsyasprefix . Itis
only useful on Unix. See also the next function.

char * Py _GetExecPrefix()
Return the “exec-prefix” for installed platforogpendent files. This is derived through a number
of complicated rules from the program name set vty SetProgramName() and some envi-
ronment variables; for example, if the program nam#usr/local/bin/python" , the exec-
prefix is"/usr/local" . The returned string points into static storage; the caller should not mod-
ify its value. This corresponds to thexec _prefix variable in the top-leveMakefile and the
--exec _prefix argumentto theonfigure script at build time. The value is available to Python
code asys.exec _prefix . Itis only useful on Unix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executa-
bles and shared libraries) are installed in a different directory tree. In a typical installation, platform
dependent files may be installed in thasr/local/plat” subtree while platform independent
may be installed iri/usr/local"

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc ma-
chines running the Solaris 2.x operating system are considered the same platform, but Intel machines
running Solaris 2.x are another platform, and Intel machines running Linux are yet another plat-
form. Different major revisions of the same operating system generally also form different platforms.
Non-Unix operating systems are a different story; the installation strategies on those systems are so
different that the prefix and exec-prefix are meaningless, and set to the empty string. Note that com-
piled Python bytecode files are platform independent (but not independent from the Python version
by which they were compiled!).

System administrators will know how to configure tim@unt or automount programs to share
"lusr/local" between platforms while havifgusr/local/plat” be a different filesystem
for each platform.

char * Py _GetProgramFullPath()
(NEW in 1.5a3!) Return the full program name of the Python executable; this is computed
as a side-effect of deriving the default module search path from the program name (set by
Py_SetProgramName() above). The returned string points into static storage; the caller should
not modify its value. The value is available to Python codsyasexecutable

char * Py _GetPath()
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName() above) and some environment variables. The returned string consists

30

of a series of directory names separated by a platform dependent delimiter character. The delimiter
character is:’ on Unix,’;” on DOS/Windows, anth’ (the ASCII newline character) on Mac-
intosh. The returned string points into static storage; the caller should not modify its value. The value
is available to Python code as the kgs.path , which may be modified to change the future search
path for loaded modules.

const char * Py _GetVersion()
Return the version of this Python interpreter. This is a string that looks something like

"1.5a3 (#67, Aug 1 1997, 22:34:28) [GCC 2.7.2.2]"

The first word (up to the first space character) is the current Python version; the first three charac-
ters are the major and minor version separated by a period. The returned string points into static
storage; the caller should not modify its value. The value is available to Python code as the list
sys.version

const char * Py _GetPlatform()
Return the platform identifier for the current platform. On Unix, this is formed from the “official”
name of the operating system, converted to lower case, followed by the major revision number; e.g.,
for Solaris 2.x, which is also known as SunOS 5.x, the valususos5" . On Macintosh, it is
"mac" . On Windows, it is'win" . The returned string points into static storage; the caller should
not modify its value. The value is available to Python codsyasplatform

const char * Py _GetCopyright()
Return the official copyright string for the current Python version, for example

"Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam”

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as the ksts.copyright

const char * Py _GetCompiler()
Return an indication of the compiler used to build the current Python version, in square brackets, for
example

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as part of the variaye.version

const char * Py _GetBuildinfo()
Return information about the sequence number and build date and time of the current Python inter-
preter instance, for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is
available to Python code as part of the variatys.version

int PySys _SetArgv(intargc, char **argv)

11.1 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multi-threaded Python programs, there’s
a global lock that must be held by the current thread before it can safely access Python objects. Without the

31

lock, even the simplest operations could cause problems in a multi-threaded proram: for example, when two
threads simultaneously increment the reference count of the same object, the reference count could end up
being incremented only once instead of twice.

Therefore, the rule exists that only the thread that has acquired the global interpreter lock may operate
on Python objects or call Python/C API functions. In order to support multi-threaded Python programs,
the interpreter regularly release and reacquires the lock — by default, every ten bytecode instructions (this
can be changed withys.setcheckinterval()). The lock is also released and reacquired around
potentially blocking I/O operations like reading or writing a file, so that other threads can run while the
thread that requests the 1/O is waiting for the I/O operation to complete.

The Python interpreter needs to keep some bookkeeping information separate per thread — for this it uses
a data structure called PyThreadState. This is new in Python 1.5; in earlier versions, such state was stored
in global variables, and switching threads could cause problems. In particular, exception handling is now
thread safe, when the application usgs.exc _info() to access the exception last raised in the current
thread.

There’s one global variable left, however: the pointer to the current PyThreadState structure. While most
thread packages have a way to store “per-thread global data”, Python’s internal platform independent thread
abstraction doesn'’t support this (yet). Therefore, the current thread state must be manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following
simple structure:

Save the thread state in a local variable.
Release the interpreter lock.

...Do some blocking I/O operation...

Reacquire the interpreter lock.

Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py BEGIN_ALLOW_THREADS
...Do some blocking 1/O operation...
Py END_ALLOW_THREADS

The BEGIN macro opens a new block and declares a hidden local variable; the END macro closes the block.
Another advantage of using these two macros is that when Python is compiled without thread support, they
are defined empty, thus saving the thread state and lock manipulations.

When thread support is enabled, the block above expands to the following code:

{
PyThreadState * save;
_save = PyEval_SaveThread();
...Do some blocking 1/O operation...
PyEval_RestoreThread(_save);

}

Using even lower level primitives, we can get roughly the same effect as follows:

32

PyThreadState *_save;

_save = PyThreadState Swap(NULL);
PyEval_Releaselock();

...Do some blocking 1/0O operation...
PyEval_AcquireLock();

PyThreadState Swap(_save);

There are some subtle differences; in particltgizval _RestoreThread() saves and restores the value

of the global variablerrno , since the lock manipulation does not guaranteedhaio is left alone. Also,

when thread support is disabld®yyEval SaveThread() andPyEval RestoreThread() don'tma-
nipulate the lock; in this cas@yEval _ReleaseLock() andPyEval _AcquireLock() are not avail-

able. (This is done so that dynamically loaded extensions compiled with thread support enabled can be
loaded by an interpreter that was compiled with disabled thread support.)

The global interpreter lock is used to protect the pointer to the current thread state. When releasing the
lock and saving the thread state, the current thread state pointer must be retrieved before the lock is released
(since another thread could immediately acquire the lock and store its own thread state in the global variable).
Reversely, when acquiring the lock and restoring the thread state, the lock must be acquired before storing
the thread state pointer.

Why am | going on with so much detail about this? Because when threads are created from C, they don'’t
have the global interpreter lock, nor is there a thread state data structure for them. Such threads must
bootstrap themselves into existence, by first creating a thread state data structure, then acquiring the lock,
and finally storing their thread state pointer, before they can start using the Python/C API. When they are
done, they should reset the thread state pointer, release the lock, and finally free their thread state data
structure.

When creating a thread data structure, you need to provide an interpreter state data structure. The interpreter
state data structure hold global data that is shared by all threads in an interpreter, for example the module
administration $ys.modules). Depending on your needs, you can either create a new interpreter state
data structure, or share the interpreter state data structure used by the Python main thread (to access the
latter, you must obtain the thread state and accesstégp member; this must be done by a thread that

is created by Python or by the main thread after Python is initialized).

XXX More?

PylInterpreterState
(NEW in 1.5a3!) This data structure represents the state shared by a number of cooperating threads.
Threads belonging to the same interpreter share their module administration and a few other internal
items. There are no public members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available
memory, open file descriptors and such. The global interpreter lock is also shared by all threads,
regardless of to which interpreter they belong.

PyThreadState
(NEW in 1.5a3!) This data structure represents the state of a single thread. The only public data
member isPylnterpreterState *interp , Which points to this thread’s interpreter state.

void PyEval _InitThreads()

33

void

void

void

void

Initialize and acquire the global interpreter lock. It should be called in the main thread before creating
a second thread or engaging in any other thread operations stgtEsal ReleaselLock() or
PyEval _ReleaseThread(tstate) . Itis not needed before callifgyEval _SaveThread()

or PyEval _RestoreThread()

This is a no-op when called for a second time. It is safe to call this function before calling
Py _Initialize()

When only the main thread exists, no lock operations are needed. This is a common situation (most
Python programs do not use threads), and the lock operations slow the interpreter down a bit. There-
fore, the lock is not created initially. This situation is equivalent to having acquired the lock: when
there is only a single thread, all object accesses are safe. Therefore, when this function initializes the
lock, it also acquires it. Before the Pythttmead module creates a new thread, knowing that either

it has the lock or the lock hasn’t been created yet, it daif&val _InitThreads() . When this

call returns, it is guaranteed that the lock has been created and that it has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global
interpreter lock.

This function is not available when thread support is disabled at compile time.

PyEval _AcquireLock()

(NEW in 1.5a3!) Acquire the global interpreter lock. The lock must have been created earlier. If this
thread already has the lock, a deadlock ensues. This function is not available when thread support is
disabled at compile time.

PyEval _Releaselock()
(NEW in 1.5a3!) Release the global interpreter lock. The lock must have been created earlier. This
function is not available when thread support is disabled at compile time.

PyEval _AcquireThread(PyThreadState *tstaje

(NEW in 1.5a3!) Acquire the global interpreter lock and then set the current thread stiéttate

which should not béNULL The lock must have been created earlier. If this thread already has the
lock, deadlock ensues. This function is not available when thread support is disabled at compile time.

PyEval _ReleaseThread(PyThreadState *tstaje

(NEW in 1.5a3!) Reset the current thread stateNbLL and release the global interpreter lock. The
lock must have been created earlier and must be held by the current threadstatbargument,
which must not béNULL, is only used to check that it represents the current thread state — if it isn't, a
fatal error is reported. This function is not available when thread support is disabled at compile time.

PyThreadState * PyEval _SaveThread()

void

(Different return type in 1.5a3!) Release the interpreter lock (if it has been created and thread
support is enabled) and reset the thread statéibl, returning the previous thread state (which is
not NULL). If the lock has been created, the current thread must have acquired it. (This function is
available even when thread support is disabled at compile time.)

PyEval _RestoreThread(PyThreadState *tstaje

(Different argument type in 1.5a3!) Acquire the interpreter lock (if it has been created and thread
support is enabled) and set the thread statstéte which must not beNULL If the lock has been
created, the current thread must not have acquired it, otherwise deadlock ensues. (This function is
available even when thread support is disabled at compile time.)

Py_BEGIN.ALLOWTHREADS

34

This macro expands to
{PyThreadState * _save; _save = PyEval SaveThread(); . Note that it contains an
opening brace; it must be matched with a followirg_ENDALLOWTHREADSnNacro. See above
for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py_ENDALLOWTHREADS
This macro expands tByEval _RestoreThread(_save); } . Note that it contains a closing
brace; it must be matched with an earlyr BEGIN ALLOWTHREAD $nacro. See above for further
discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py_BEGIN.BLOCKTHREADS
This macro expands toPyEval RestoreThread(_save); i.e. it is equivalent to
Py_ENDALLOWTHREADSwithout the closing brace. It is a no-op when thread support is disabled
at compile time.

Py BEGIN.UNBLOCKIHREADS
This macro expands tosave = PyEval _SaveThread(); i.e. it is equivalent to
Py_BEGIN.ALLOWTHREADSvithout the opening brace and variable declaration. It is a no-op when
thread support is disabled at compile time.

All of the following functions are only available when thread support is enabled at compile time, and must
be called only when the interpreter lock has been created. They are all new in 1.5a3.

PyInterpreterState * PylnterpreterState New()
Create a new interpreter state object. The interpreter lock must be held.

void PyinterpreterState Clear(PylnterpreterState *interp
Reset all information in an interpreter state object. The interpreter lock must be held.

void PylinterpreterState Delete(PylnterpreterState *interp
Destroy an interpreter state object. The interpreter lock need not be held. The interpreter state must
have been reset with a previous calRginterpreterState Clear()

PyThreadState * PyThreadState New(PylnterpreterState *interp
Create a new thread state object belonging to the given interpreter object. The interpreter lock must
be held.

void PyThreadState _Clear(PyThreadState *tstaje
Reset all information in a thread state object. The interpreter lock must be held.

void PyThreadState Delete(PyThreadState *tstaje
Destroy a thread state object. The interpreter lock need not be held. The thread state must have been
reset with a previous call tByThreadState _Clear()

PyThreadState * PyThreadState Get()
Return the current thread state. The interpreter lock must be held. When the current thread state is
NULL, this issues a fatal error (so that the caller needn’t checK&icL).

PyThreadState * PyThreadState _Swap(PyThreadState *tstaje
Swap the current thread state with the thread state given by the argtatad@twhich may beNULL
The interpreter lock must be held.

35

11.2 Defining New Object Types

XXX To be done:
PyObject, PyVarObject
PyObjectHEAD, PyObjectHEAD_INIT, PyObject VAR _HEAD

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc,
intintobjargproc, objobjargproc, getreadbufferproc, getwritebufferproc, getsegcountproc, destructor, print-
func, getattrfunc, getattrofunc, setattrfunc, setattrofunc, cmpfunc, reprfunc, hashfunc

PyNumberMethods
PySequenceMethods
PyMappingMethods
PyBufferProcs

PyTypeObiject

DL_IMPORT

PyTypeType

Py*_Check
Py_None,_Py_NoneStruct
_PyObjectNew, _PyObjectNewVar
PyObjectNEW, PyObjectNEW_VAR

36

Chapter 12

Specific Data Types

This chapter describes the functions that deal with specific types of Python objects. It is structured like the
“family tree” of Python object types.

12.1 Fundamental Objects

This section describes Python type objects and the singleton dbpee.

12.1.1 Type Objects
PyTypeObject

PyObject * PyType _Type
12.1.2 The None Object
PyObject * Py _None

XXX macro

12.2 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the
specific kinds of sequence objects that are intrinsic to the Python language.

12.2.1 String Objects

PyStringObject
This subtype oPyObject represents a Python string object.

PyTypeObject PyString Type
This instance oPyTypeObject represents the Python string type.

37

int PyString _Check(PyObject *g

PyObiject * PyString _FromStringAndSize(constchar *, in}
PyObject * PyString _FromString(const char }

int PyString _Size(PyObject?

char * PyString _AsString(PyObject?

void PyString _Concat(PyObject **, PyObject ¥

void PyString _ConcatAndDel(PyObject**, PyObject ¥
int _PyString _Resize(PyObject**, int)

PyObiject * PyString _Format(PyObiject *, PyObject)
void PyString _InterninPlace(PyObiject *¥)

PyObiject * PyString _InternFromString(const char 3
char * PyString _AS_STRING(PyStringObject ¥

int PyString _GETSIZE(PyStringObject ¥

12.2.2 Tuple Objects
PyTupleObject
This subtype oPyObject represents a Python tuple object.

PyTypeObject PyTuple _Type
This instance oPyTypeObject represents the Python tuple type.

int PyTuple _Check(PyObject*p
Return true if the argument is a tuple object.

PyTupleObject * PyTuple New(int s)
Return a new tuple object of size

int PyTuple _Size(PyTupleObject *p
akes a pointer to a tuple object, and returns the size of that tuple.

PyObject * PyTuple _Getltem(PyTupleObject*p, int pgs
returns the object at positiquos in the tuple pointed to bp.

PyObject * PyTuple _GETITEM(PyTupleObject *p, int pgs
does the same, but does no checking of it's arguments.

PyTupleObject * PyTuple _GetSlice(PyTupleObject *p, int low, int high
takes a slice of the tuple pointed to pyfrom low to high and returns it as a new tuple.

int PyTuple _Setltem(PyTupleObject *p, int pos, PyObject o
inserts a reference to objextat positionpos of the tuple pointed to bp. It returns 0 on success.

void PyTuple _SET.ITEM(PyTupleObject *p, int pos, PyObject o
does the same, but does no error checking, and stlomiythe used to fill in brand new tuples.

PyTupleObject * _PyTuple _Resize(PyTupleObject *p, int new, int lags_sticky)

38

can be used to resize a tuple. Because tuplesugmposedo be immutable, this should only be used

if there is only one module referencing the object. i use this if the tuple may already be known

to some other part of the codlast _is _sticky is a flag - if set, the tuple will grow or shrink at
the front, otherwise it will grow or shrink at the end. Think of this as destroying the old tuple and
creating a new one, only more efficiently.

12.2.3 List Objects
PyListObject
This subtype oPyObject represents a Python list object.

PyTypeObject PyList _Type
This instance oPyTypeObject represents the Python list type.

int PyList _Check(PyObject*p
returns true if it's argument is RyListObject

PyObject * PyList _New(intsize

int PyList _Size(PyObject?)

PyObject * PyList _Getltem(PyObject*, in)

int PyList _Setltem(PyObiject*, int, PyObject ¥
int PyList _Insert(PyObject*, int, PyObject)

int PyList _Append(PyObject *, PyObject¥
PyObject * PyList _GetSlice(PyObject*, int, in)
int PyList _SetSlice(PyObject*, int, int, PyObject)
int PyList _Sort(PyObject?

int PyList _Reverse(PyObject?

PyObject * PyList _AsTuple(PyObject?
PyObject * PyList _GETITEM(PyObject *list, int)
int PyList _GETSIZE(PyObject *lis}

12.3 Mapping Objects

12.3.1 Dictionary Objects
PyDictObiject
This subtype oPyObject represents a Python dictionary object.

PyTypeObject PyDict _Type
This instance oPyTypeObject represents the Python dictionary type.

int PyDict _Check(PyObject*p
returns true if it's argument is a PyDictObject

39

PyDictObject * PyDict New()
returns a new empty dictionary.

void PyDict _Clear(PyDictObject*p
empties an existing dictionary and deletes it.

int PyDict _Setltem(PyDictObject *p, PyObject *key, PyObject *yal
insertsvalue into the dictionary with a key okey . Bothkey andvalue should be PyObjects,
andkey should be hashable.

int PyDict _SetltemString(PyDictObject *p, char *key, PyObject *val
insertsvalue into the dictionary usingey as a keykey should be a char *

int PyDict _Delltem(PyDictObject *p, PyObject *key
removes the entry in dictionagy with key key . key is a PyObject.

int PyDict _DelltemString(PyDictObject *p, char *key
removes the entry in dictionagy which has a key specified by tiohar *key

PyObject * PyDict _Getltem(PyDictObject *p, PyObject *key
returns the object from dictionagy which has a kekey .

PyObject * PyDict _GetltemString(PyDictObject *p, char *key
does the same, bty is specified as ahar * , rather than &yObject *

PyListObject * PyDict _Items(PyDictObject *p
returns a PyListObject containing all the items from the dictionary, as in the mapping method
items() (see the Reference Guide)

PyListObject * PyDict Keys(PyDictObject *p
returns a PyListObject containing all the keys from the dictionary, as in the mapping metysQ
(see the Reference Guide)

PyListObject * PyDict _Values(PyDictObject *p
returns a PyListObject containing all the values from the dictionary, as in the mapping method
values() (see the Reference Guide)

int PyDict _Size(PyDictObject *p
returns the number of items in the dictionary.

int PyDict _Next(PyDictObject *p, int ppos, PyObject **pkey, PyObject **pvajue

12.4 Numeric Objects

12.4.1 Plain Integer Objects
PyIntObject
This subtype oPyObject represents a Python integer object.

PyTypeObject Pyint _Type
This instance oPyTypeObject represents the Python plain integer type.

int Pyint _Check(PyObject?
PyIntObject * Pyint _FromLong(long ival)

40

creates a new integer object with a valuevat

The current implementation keeps an array of integer objects for all integers between -1 and 100,
when you create an int in that range you actually just get back a reference to the existing object. So it
should be possible to change the value of 1. | suspect the behaviour of python in this case is undefined.

-)
long PyInt _AS LONGPyIntObject *ig
returns the value of the objeict .

long PyInt _AsLong(PyObiject *i9
will first attempt to cast the object to a PyIntObject, if it is not already one, and the return it's value.

long Pyint _GetMax()
returns the systems idea of the largest int it can handle (LOMNX, as defined in the system header
files)

12.4.2 Long Integer Objects
PyLongObject
This subtype oPyObject represents a Python long integer object.

PyTypeObject PyLong _Type
This instance oPyTypeObject represents the Python long integer type.

int PyLong _Check(PyObject*p
returns true if it's argument is RyLongObject

PyObject * PyLong _FromLong(long)

PyObject * PyLong _FromUnsignedLong(unsigned lony
PyObject * PyLong _FromDouble(doublg

long PyLong _AsLong(PyObject?

unsigned long PyLong _AsUnsignedLong(PyObiject)
double PyLong _AsDouble(PyObject?

PyObject * *PyLong _FromString(char*, char **, int)

12.4.3 Floating Point Objects
PyFloatObject
This subtype oPyObject represents a Python floating point object.

PyTypeObject PyFloat Type
This instance oPyTypeObject represents the Python floating point type.

int PyFloat _Check(PyObject*p
returns true if it's argument is RyFloatObject

PyObject * PyFloat _FromDouble(doublg
double PyFloat _AsDouble(PyObject?

41

double PyFloat _ASDOUBLEPYyFloatObject?

12.4.4 Complex Number Objects
Py_complex
typedef struct double real; double imag;

PyComplexObiject
This subtype oPyObject represents a Python complex number object.

PyTypeObject PyComplex _Type
This instance oPyTypeObject represents the Python complex number type.

int PyComplex _Check(PyObject*p
returns true if it's argument is ByComplexObject

Py_complex _Py_c_sum(Py.complex, Pycomplex
Py_complex _Py_c_diff(Py.complex, Pycomplex
Py_complex _Py_c_neg(Py.complex

Py_complex _Py_c_prod(Py-complex, Pycomplex
Py_complex _Py_c_quot(Py.complex, Pycomplex
Py_complex _Py_c_pow(Py_.complex, Pycomplex
PyObject * PyComplex _FromCComplex(Py.comple}
PyObject * PyComplex _FromDoubles(double real, double im3gg
double PyComplex _RealAsDouble(PyObject*op
double PyComplex _ImagAsDouble(PyObject*op
Py_complex PyComplex _AsCComplex(PyObject *op

12.5 Other Objects

12.5.1 File Objects
PyFileObject
This subtype oPyObject represents a Python file object.

PyTypeObject PyFile _Type
This instance oPyTypeObject represents the Python file type.

int PyFile _Check(PyObject*p
returns true if it's argument is RyFileObject

PyObiject * PyFile _FromString(char *name, char *mode
creates a new PyFileObject pointing to the file specifiedame with the mode specified imode

PyObject * PyFile _FromFile(FILE *fp, char *name, char *mode, int (*cloge
) creates a new PyFileObject from the already-ofen The functionclose will be called when the

42

file should be closed.

FILE * PyFile _AsFile(PyFileObject*p
returns the file object associated wjitas aFILE *

PyStringObject * PyFile _GetLine(PyObject*p, intn
undocumented as yet
PyStringObject * PyFile _Name(PyObject *p

returns the name of the file specified ppyas a PyStringObject

void PyFile _SetBufSize(PyFileObject*p, intr)
on systems witlsetvbuf only

int PyFile _SoftSpace(PyFileObject *p, int newflap
same as the file object methedftspace

int PyFile _WriteObject(PyObject *obj, PyFileObject *p
writes objectobj to file objectp

int PyFile _WriteString(char *s, PyFileObject *p
writes strings to file objectp

12.5.2 CObijects

XXX

43

Index

*PyLong _FromString ,41
_Pylmport _FindExtension ,15
_Pylmport _Fini , 15

_Pylmport _FixupExtension , 15
_Pylmport _nit ,15
_PyObject _NEW 27

_PyObject NEWVAR, 27
_PyObject _New, 27

_PyObject _NewVar , 27
_PyString _Resize , 38
_PyTuple _Resize , 38
Py_c._diff ,42

_Py_c_neg , 42

_Py_c_pow, 42

_Py_c_prod ,42

_Py_c_quot , 42

_Py_c_sum, 42

Py_AtExit ,9

Py_BEGIN ALLOWTHREADS 34
Py_BEGIN.BLOCKTHREADS 35
Py_BEGIN.UNBLOCKIHREADS 35
Py_complex , 42

Py_DECREEF 10
Py_ENDALLOWTHREADS 35
Py_EndInterpreter , 29
Py_Exit ,9

Py_FatalError , 9
Py_FdlsInteractive , 14
Py_Finalize , 28
Py_GetBuildinfo , 31
Py_GetCompiler ,31
Py_GetCopyright , 31
Py_GetExecPrefix , 30
Py_GetPath , 30
Py_GetPlatform , 31
Py_GetPrefix , 30
Py_GetProgramFullPath , 30
Py_GetProgramName , 30

Py _GetVersion ,31

44

Py_INCREF, 10

Py _Initialize , 28
Py_lsInitialized , 28
Py_Newlinterpreter , 29
Py_None , 37

Py_SetProgramName , 29

Py XDECREF 10

Py XINCREF, 10

PyCallable _Check , 20
PyComplex _AsCComplex , 42
PyComplex Check , 42
PyComplex -FromCComplex , 42
PyComplex FromDoubles , 42
PyComplex ImagAsDouble , 42
PyComplex _RealAsDouble , 42
PyComplex _Type , 42
PyComplexObject , 42

PyDict _Check , 39

PyDict _Clear ,40

PyDict _Delltem , 40

PyDict _DelltemString , 40
PyDict _Getltem , 40

PyDict _GetltemString , 40
PyDict _ltems , 40

PyDict _Keys , 40

PyDict _New, 25, 40

PyDict _Next , 40

PyDict _Setltem , 40

PyDict _SetltemString , 40
PyDict _Size , 40

PyDict _Type , 39

PyDict _Values , 40
PyDictObject , 39

PyErr _BadArgument , 12
PyErr _BadlInternalCall , 13
PyErr _CheckSignals , 13
PyErr _Clear ,12

PyErr _ExceptionMatches , 11
PyErr _Fetch , 12

PyErr _GivenExceptionMatches , 11
PyErr _NewException ,13

PyErr _NoMemory, 12

PyErr _NormalizeException , 11
PyErr _Occurred ,11

PyErr Print 11

PyErr _Restore ,12

PyErr _SetFromErmo ,12

PyErr _Setinterrupt , 13

PyErr _SetNone , 12

PyErr SetObject , 12

PyErr _SetString , 12

PyEval _AcquireLock , 34

PyEval _AcquireThread

, 34

PyEval _InitThreads , 33
PyEval _ReleaseLock ,34

PyEval _ReleaseThread
PyEval _RestoreThread

, 34
, 34

PyEval _SaveThread , 34

PyFile
PyFile
PyFile
PyFile
PyFile
PyFile
PyFile
PyFile
PyFile
PyFile
PyFile

_AsFile ,43
_Check , 42
_FromFile
_FromString
_GetLine ,43
_Name, 43
_SetBufSize
_SoftSpace , 43
_Type ,42
_WriteObject , 43
_WriteString , 43

, 25,42
, 25,42

, 43

PyFileObject , 42

PyFloat
PyFloat
PyFloat
PyFloat
PyFloat

_AS.DOUBLE 42
_AsDouble , 41
_Check , 41
_FromDouble , 25, 41
_Type , 41

PyFloatObject ,41

Pylmport
Pylmport
Pylmport
Pylmport
Pylmport
Pylmport
Pylmport
Pylmport
Pylmport
Pylmport

_AddModule , 15

Cleanup , 15
_ExecCodeModule , 15
_FrozenModules , 16
_GetMagicNumber , 15
_GetModuleDict , 15
Amport , 15
_ImportFrozenModule , 15
_ImportModule , 14
_UImportModuleEx , 14

45

Pylmport _ReloadModule , 15

Pyint _ASLONG 41

Pyint _AsLong , 41

Pyint _Check , 40

PyInt _FromLong , 25, 40

PyInt _GetMax , 41

Pyint _Type , 40

PylnterpreterState , 33
PylInterpreterState LClear ,35
PylInterpreterState Delete ,35
PylnterpreterState New, 35

PyIntObject , 40

PyList _Append , 39

PyList _AsTuple , 39

PyList _Check , 39

PyList _GETITEM, 39

PyList _GETSIZE , 39

PyList _Getltem , 39

PyList _GetSlice , 39

PyList _Insert ,39

PyList _New, 25, 39

PyList _Reverse , 39

PyList _Setltem ,39

PyList _SetSlice ,39

PyList _Size , 39

PyList _Sort , 39

PyList _Type , 39

PyListObject , 39

PyLong _AsDouble , 41

PyLong _AsLong , 41

PyLong _AsUnsignedLong , 41
PyLong _Check , 41

PyLong _‘FromDouble , 25, 41
PyLong FromLong , 25, 41
PyLong _-FromUnsignedLong , 41
PyLong _Type , 41

PyLongObject , 41

PyMapping _Check , 24
PyMapping Clear , 24
PyMapping _Delltem , 24
PyMapping DelltemString , 24
PyMapping _GetltemString , 24
PyMapping _HasKey , 24
PyMapping ‘HasKeyString
PyMapping _Items , 24
PyMapping _Keys , 24
PyMapping _Length , 24

, 24

PyMapping _SetltemString , 25
PyMapping _Values , 24
PyNumber_Absolute , 22
PyNumber Add , 21
PyNumber_And , 22

PyNumber Check , 21
PyNumber_Coerce , 22
PyNumber Divide ,21
PyNumber_Divmod , 21
PyNumber Float , 23
PyNumber_Int , 22
PyNumber_Invert , 22
PyNumber_Long , 23

PyNumber _Lshift , 22
PyNumber_Multiply 21
PyNumber_Negative , 22
PyNumber Or , 22
PyNumber_Positive , 22
PyNumber _Power , 22
PyNumber_Remainder , 21
PyNumber Rshift , 22
PyNumber Subtract , 21
PyNumber _Xor , 22

PyObject *Py _CompileString , 18
PyObject *PyRun _File ,18
PyObject *PyRun _String ,18
PyObject _CallFunction , 20
PyObject _CallMethod , 20
PyObject _CallObject 20
PyObject Cmp, 20

PyObject _Compare , 20
PyObject DelAttr 20
PyObject _DelAttrString , 19
PyObject _Delltem ,21
PyObject GetAttr 19
PyObject _GetAttrString , 19
PyObject Getltem ,21
PyObject _HasAttr ,19
PyObject _HasAttrString , 19
PyObject _Hash, 20

PyObject _IsTrue ,20
PyObject _Length , 21
PyObject Print ,19
PyObject Repr , 20

PyObject _SetAttr ,19
PyObject _SetAttrString , 19
PyObject _Setltem ,21

46

PyObject _Str , 20
PyObject _Type , 21
PyOS GetLastModificationTime

, 14

PyParser _SimpleParseFile , 18

PyParser _SimpleParseString
PyRun_AnyFile ,18
PyRun_InteractiveLoop , 18
PyRun_InteractiveOne , 18
PyRun_SimpleFile , 18
PyRun_SimpleString , 18
PySequence Check , 23
PySequence Concat , 23
PySequence Count , 23
PySequence Delltem , 23
PySequence DelSlice 23
PySequence Getltem , 23
PySequence GetSlice ,23
PySequence In , 24
PySequence Index , 24
PySequence Repeat , 23
PySequence _Setltem , 23
PySequence SetSlice ,23
PySequence _Tuple , 23

PyString _AS STRING, 38
PyString _AsString , 38
PyString _Check , 38

PyString _Concat , 38
PyString _ConcatAndDel , 38
PyString _Format , 38
PyString _FromString , 25, 38
PyString _FromStringAndSize
PyString _GETSIZE , 38
PyString _InternFromString
PyString _InterninPlace , 38
PyString _Size , 38

PyString _Type , 37

PyStringObject , 37
PySys _SetArgv , 31
PyThreadState |, 33

PyThreadState _Clear , 35
PyThreadState _Delete , 35
PyThreadState _Get , 35
PyThreadState _New, 35
PyThreadState _Swap, 35

PyTuple _Check , 38
PyTuple _GETITEM, 38
PyTuple _Getltem , 38

, 18

, 25, 38

, 38

PyTuple
PyTuple
PyTuple
PyTuple
PyTuple
PyTuple

_GetSlice , 38
New, 25, 38
_SET.ITEM, 38
_Setltem , 38
_Size , 38
_Type , 38

PyTupleObject , 38
PyType Type , 37
PyTypeObject , 37

struct

_frozen , 16

47

